

Color photo taken by Laura Pica August 2011

River Vue Apartments

Laura Pica – Mechanical Option

Adviser – Stephen Treado

Senior Thesis Program 2011-2012

Department of Architectural Engineering

Color photo taken by Laura Pica August 2011

Building Overview

Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Building Overview

Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Photo taken by Laura Pica August 2011

Photo taken by Laura Pica August 2011

Photo courtesy: www.lonelyplanet.com

Photo courtesy www.wikipedia.com

Building Overview

Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Building Loads

Project Cost Breakdown

Building Overview

Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Space	ASHRAE Outdoor Airflow (cfm)	As Designed Outdoor Airflow (cfm)	Requires Redesign
mmon Corridor	933	5250	
irwells	346	3200	
in Entry Lobby	42	570	
ir Lobby	81	150	
ct Equip Room	48	0	YES
nt Machine Room	96	0	YES
vator Machine Room	150	0	YES
ler Room	96	0	YES
Pump Room	96	0	YES
nerator Room	96	0	YES
elling Units 2 nd Floor	1641	1156	YES
elling Units 3-14 Floors	17504	8580	YES
elling Units 15-16 Floors	2217	3107	
ness Center	516	500	YES
ail Sales	365	500	
king Garage	2070	0	YES

Building Overview

Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Monthly Utility Usage							
Month	Electric (kW)	Gas (therms)	Water (gal)				
1	722	36776	16				
2	717	35939	13				
3	722	26060	17				
4	849	15040	104				
5	839	4558	263				
6	845	1307	411				
7	846	46	509				
8	844	1717	350				
9	839	4782	238				
10	842	17417	96				
11	749	20845	83				
12	726	33222	17				
TOTAL	9540	197709	2117				

Typical High Rise Apartment			River Vue Apartments		
(occupancy	sqft/persor)	occupancy sqft/person	
Lo	Av	Hi			
325	175	100		200	
	lights wa	atts/sqft		lights watts/sqft	
Lo	Av	Hi			
1	2	4		1	
	refrigeration	on sqft/ton		refrigeration sqft/ton	
Lo	Av	Hi			
450	400	350		90	
pply air	rate (east-	south-west	t) cfm/sqft	supply air rate (east-south-	
				west) cfm/sqft	
Lo	Av	Hi			
0.8	1.2	1.7		0.63	
supp	oly air rate (north) cfm	/sqft	supply air rate (north) cfm/sqft	
Lo	Av	Hi			
0.5	0.8	1.3		0.63	

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

AHU Sizing Load Calculations

Lighting

Equipment

Occupancy

Solar Gain

OADS (E	Btu/h)				
ghting	equipment	occupancy	solar	TOTAL Btu/h	TOTAL cfm
18096	7278258	352800	948365	8.90E+06	411922

Need for energy conservation

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Demand Control Ventilation

Demand Control Ventilation

$$c(t+\Delta t) = c(t) * e^{-n*\Delta t} + (cb + (N*q)/(n*V)) * (1-e^{-n*\Delta t})$$

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

airflow airflow airflow airflow

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Contaminant Calculations

Contaminant Differential (Ceq) = Co + (N/Vo)

Vo = outdoor airflow rate per person

N = CO2 rate per person

Co = CO2 concentration outside

Assumptions:

15 cfm/person

700 ppm

1.2 MET level means N= 0.0106 cfm

Co = 400 ppm

Ceq = 1107 ppm differential

MET =1.2 and 15 cfm of outside airflow, the expected CO2 concentration will be about 0.13 percent

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Telair Ventostate 8000 series sensors

accurate within 3% and can detect 400-1250 ppm of CO2 CO2 detection between 2-3 minutes

Control Logic

one sensor per floor located in return air duct supply air fan VFD to start when CO2 concentration reaches 1170 ppm or more

*See final report for full descriptions of control logic and sequence of operation

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

recovery

energy

recovery

Operation at Design Capacity

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

20 Year Life Cycle Cost

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

System Selection

Airflow	169,033 cfm
Coil Size	434 tons
Total Btu/h	8.9MBtu/h
Annual CO2 Emissions	20,981,096 lbm/yr
Capital Cost	\$363,600
20 Year Life Cycle Cost	\$16.9 Million

AHU with DCV and Economizer

Success measured with:

Occupant comfort

Reduced energy use and emissions with control strategy

Minimum ventilation requirements met

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Typical Floor Duct Layout

20 feet

Size	Capacity	Throw	NC	Pressure Drop
2x12 sill grille	62 cfm	9.45 feet	20	0.073 in wg

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Available Solar Radiation

www.rredc.nrel.gov/solar_data

β	Monthly Electric
	Output
0	1.401E+18
5	1.389E+22
10	9.904E+20
1 5	4.487E+20
20	1.722E+20
25	3.564E+20
30	1.177E+24
35	1.044E+21
40	6.104E+20
45	3.497E+20

5500 sq. ft. of available space

http://gerardribas.com/wp-content/uploads/2011/05/Photovoltaic-Pannles6.jpg

Photo taken by Laura Pica August 2011

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Energy Analysis

Windows modeled with improved U-value to represent shading

Sensible solar gain reduction of 243,549 Btu/h

(10% of total sensible load)

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

nternal Shading Analysis						
# Shades	volts	amps	VA	PF	Watts	Full load amps
1	120	20	2400	1	2400	12
400	120	8000	960000	1	960000	4624

# hades	Shade (kW) requirement per year	Annual PV Array (kW) output	Δ (PV Output- Shading Requirement)	Annual Mechanical System Requiremen t (kW)	Mech Syst PV Pov Availa	wer
1	2102.4	20072	20770	9491826	9460954	
	2102.4	30872	28770	9491820	9460954	
					0	
400	840960		-810088	9491826	9460954	0.33%

http://mechosystems.com/UrbanShade/

Laura Pica – Mechanical Option - Adviser – Stephen Treado

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

	Original Photovoltaic TOTAL			712,273.54
	PA Federal Investment Tax Credit	30% of total installation cost	\$	213,682.06
Solar Funding	West Penn Power Sustainable Energy Fund	one time grant	\$	25,000.00
	Ne	\$	473,591.48	

simple payback period = 26.6 years

ovoltaid /	C Array							
ate	Year	Cap	ital	C	ther	Elect.	El	ect. Value
				ſ	√lat.	Escalation		
11	1	\$ 1,47	3,591	\$	100	1.00	\$	64,461
)12	2	\$	-	\$	100	0.96	\$	61,883
13	3	\$	-	\$	100	0.93	\$	59,949
)14	4	\$	-	\$	100	0.91	\$	58,660
)15	5	\$	=	\$	100	0.91	\$	58,660
16	6	\$	-	\$	100	0.90	\$	58,015
17	7	\$	-	\$	100	0.90	\$	58,015
18	8	\$	-	\$	100	0.90	\$	58,015
19	9	\$	-	\$	100	0.91	\$	58,660
20	10	\$	-	\$	100	0.92	\$	59,304
21	11	\$	-	\$	100	0.93	\$	59,949
)22	12	\$	-	\$	100	0.94	\$	60,594
23	13	\$	-	\$	100	0.94	\$	60,594
24	14	\$	-	\$	100	0.94	\$	60,594
25	15	\$	-	\$	100	0.94	\$	60,594
26	16	\$	-	\$	100	0.94	\$	60,594
27	17	\$	-	\$	100	0.94	\$	60,594
28	18	\$	-	\$	100	0.94	\$	60,594
29	19	\$	-	\$	100	0.93	\$	59,949
30	20	\$	-	\$	100	0.93	\$	59,949
				Net	Present '	Value	\$	953,086

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Category	Cost for Equipment & Materials	Total installation hours	Total installation days
New Mech System	\$ 865,728.62	18306	763
Old Mechanical System	\$ 1,371,508.55	24812	1034
Mech System Cost Difference	\$ 505,779.92 savings	6506	271

Category	To	otal Labor Cost
New Mech System	\$	15,610.64
Old Mechanical System	\$	3,323.81
Mech System Cost Difference	\$	(12,286.83)

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Category	Cost for Equipment & Materials	Total installation hours	Total Labor Cost
New Mech System with Photovoltaic and Shading Systems TOTAL	\$ 2,578002.16	18911	\$ 17,128.94
Old Mechanical System	\$ 1,371,508.55	24812	\$ 3,323.81
Overall System Difference	\$ (1,206,493.62)	5901	\$ (13,805.13)

www.usgbc.org

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

O	riginal Schedule	
Duration (days)	Start	Finish
840	7/25/2011	8/31/2012

Adjusted Schedule							
Duration	Decrease in Time						
640	24%						

Project Schedule								
	Original Schedule				Adjusted Schedule			
	Duration Start		Start Finish		Duration	Dec	rease in	
						-	Time	
TOTAL	840	7/25/2011	8/31/2012		640		24%	
MEP Rough In	465	7/25/2011	2/10/2012		340		27%	
MEP Finishes	250	11/21/2011	7/27/2012		190		24%	
Punch list &	125	2/27/2012	8/31/2012		110		12%	
Inspections								

Building Overview
Existing Mechanical System

Mechanical Depth Design

Demand Control Ventilation

Mechanical Design Alternatives

Energy & Cost Analyses

Breadth 1 – Photovoltaic Array Study

Breadth 2 – CM Study

Conclusions

Acknowledgements

Conclusions

Recommended larger AHU with Demand Control Ventilation

Increased occupant comfort

Minimum ventilation requirements met

Decreased capital cost

Decreased construction schedule

Photovoltaic array and internal shading not recommended

Next Analysis – the use of solar thermal collectors and storage to assist existing system

Photo taken by Laura Pica August 2011

Acknowledgements

- My adviser, Stephen Treado, for his help in editing my technical reports and providing professional consulting
- All other Department of Architectural Engineering faculty for their passion for teaching, continued support and encouragement
- All AE Mentors and Practitioners from the "Mentoring Center" for their valuable design advice
- Kevin Ludwick, Turner Project Manager for supplying design documents and construction data
- And most importantly, my friends and family for their support throughout my senior year. I could have never finished this project without you!

Thank You

Questions?

Appendix

Mechanical Depth Design

Load Calculations

LOADS (E	Btu/h)				
lighting	equipment	occupancy	solar	TOTAL Btu/h	TOTAL cfm
318096	7278258	352800	948365	8.90E+06	411922

Room No	Space Type	(Az)	OA Rate per person (Rp)	OA Rate (cfm)	OA Rate (cfm)	(CFM)	Btu/h
B-10	lobby	100	5	25	6	31	1.435

Room	Space Type	Area		Density	Btu/h
No		(Az)	(Watts)	(W/sqft)	
B-10	lobby	100	256	2.560	874

Equipment	Quantity	BTU/h per unit	Watts per unit	TOTAL Btu/h
dishwasher	199	800	234	159200

Room No	Space Type	Expected # of occupants	occupant load (Btu/h)	CFM
-10	lobby	5	1750	81

Breadth 2 – CM Study

Mechanical System Takeoff

Category	Equipment	Quantity	Cost Per Item (Inc. O&P)		Total Cost	
		_				
	AHU – VAV for 100,000 cfm, not incl duct & accessories	2	\$	161,000.00	\$	322,000.00
	DCV Direct-Digital CO2 Detector System, incl panel & sensor	1	\$	\$ 1,650.00		1,650.00
	DCV sensor	200	\$	950.00	\$	190,000.00
	DCV Wiring (ft)	212	\$	\$ 50.00		10,600.00
	Economizer Add-on	1 \$		25,000.00	\$	25,000.00
Mechanical System Design	supply duct (lb) – 20"	16299.75	\$	5.67	\$	92,338.08
Alternative	supply duct (lb) – 10"	16268.1	\$	2.83	\$	45,989.92
	return duct (lb) – 20"	24604	\$	5.67	\$	139,382.37
		225	.	40.55		64472.75
	supply elbows	225	\$	18.55		\$4173.75
	return elbows	255	\$	37.00		\$9435
	supply transitions	60		\$35		\$2100
	diffusers	225		\$65.5		\$14737.5
	modulating dampers for AHU	2		\$161		\$322
	TOTAL				\$	857,728.62

Category	Equipment	Crew Size	\$ Per crew member		Total Labor \$		Labor Hours per unit	Total installation hours
	AHU – VAV for 100,000 cfm, not incl duct & accessories	1	\$:	14,400.00	\$ 1	14,400.00	290	580
	DCV Direct-Digital CO2 Detector System, incl panel & sensor	2	\$	104.00	\$	208.00	2	2
	DCV sensor	2	\$	57.00	\$	114.00	1.1	220
	DCV Wiring (ft)	1	\$	16.00	\$	16.00	0.2	42
	Economizer Add-on	1	\$	590.00	\$	590.00	13	13
	supply duct (lb) – 20"	2	\$	16.90	\$	33.80	0.369	6015
lechanical System Design	supply duct (lb) – 10"	2	\$	4.42	\$	8.84	0.1	1627
Alternative	return duct (lb) – 20"	2	\$	16.90	\$	33.80	0.369	9079
	supply elbows	2	\$	10.00	\$	20.00	0.5	113
	return elbows	2	\$	10.00	\$	20.00	0.5	128
	supply transitions	2	\$	10.00	\$	20.00	0.5	30
	diffusers	4	\$	12.30	\$	49.20	0.25	56
	modulating dampers for AHU	1	\$	49.00	\$	49.00	1	2
	TOTAL				\$ 1	15,562.64		17906

Breadth 2 – CM Study

Electrical Takeoff

Category	Equipment	Quantity	Cost Per Item (Inc O&P)		Total Cost	
Photovoltaic Array	photovoltaic panel kit	94	\$	6,790.91	\$	638,345.54
	additional wiring (ft)	212	\$	140.00	\$	29,680.00
	conduit	212	\$	44.00	\$	9,328.00
	conduit cutting/drilling	64	\$	200.00	\$	12,800.00
	grounding electrode	1	\$	120.00	\$	120.00
	circiut breaker	1	\$	22,000.00	\$	22,000.00
	internal shade & motor	400	\$	2500	\$	1,000,000.00
	TOTAL				\$	1,712,273.54

Category	Equipment	Crew Size	\$ Per c	rew member	Tot	tal Labor \$	Labor Hours per unit	Total installation hours
Photovoltaic Array	photovoltaic panel kit	2	\$	25.00	\$	50.00	0.75	70.5
	additional wiring (ft)	2	\$	16.00	\$	32.00	1	212
	conduit	2	\$	9.40	\$	18.80	0.2	42.4
	conduit cutting/drilling	1	\$	114.00	\$	114.00	2.4	153.6
	grounding electrode	1	\$	68.50	\$	68.50	1.45	1.45
	circiut breaker	1	\$	1,175.00	\$	1,175.00	25	25
	internal shade	4	\$	15.00	\$	60.00	0.25	100
	shade motor	4	\$	15.00	\$	60.00	0.2	80
	TOTAL				\$	1,578.30		685

Breadth 2 – CM Study

Schedule Changes

Project Schedule								
	Original Schedule			Adjusted Sched	ule			
Zone	Duration	Start	Finish	Duration	Decrease Time			
TOTAL	840	7/25/2011	8/31/2012	640	24%			
MEP Rough In	465	7/25/2011	2/10/2012	340	27%			
Elevator Lobbies & Stair Towers Rough In	100	8/15/2011	12/9/2011	85				
Basement and Level 1 Underground Rough In	80	10/24/2011	2/10/2012	70				
Level 2, 3, 4, 5 Rough In	60	7/25/2011	10/14/2011	40				
Level 6 & 7 Rough In	30	8/1/2011	9/9/2011	15				
Level 8 & 9 Rough In	30	8/22/2011	9/30/2011	15				
Level 10 & 11 Rough In	30	9/12/2011	10/21/2011	15				
Level 12 & 13 Rough in	30	10/3/2011	11/11/2011	15				
Level 14, 15 & 16 Rough In	45	10/24/2011	12/23/2011	30				
Penthouse and Roof Rough In	60	8/8/2011	10/28/2011	55				
MEP Finishes	250	11/21/2011	7/27/2012	190	24%			
Elevator Lobbies & Stair Towers	60	11/21/2011	2/10/2012	45				
Basement and Level 1 Underground	20	1/30/2012	2/24/2012	15				
Level 2, 3, 4, 5	60	11/28/2011	2/17/2012	45				
Level 6 & 7	20	2/27/2012	3/23/2012	15				
Level 8 & 9	20	3/19/2012	4/13/2012	15				
Level 10 & 11	20	4/30/2012	5/25/2012	15				
Level 12 & 13	20	5/28/2012	6/22/2012	15				
Level 14, 15 & 16	30	6/18/2012	7/27/2012	25				
Punch list & Inspections	125	2/27/2012	8/31/2012	110	12%			
Basement and Level 1, 2, 3, 4, 5	20	2/27/2012	3/23/2012	18				
Level 6 & 7	20	3/26/2012	4/20/2012	18				
Level 8 & 9	20	4/23/2012	5/18/2012	18				
Level 10 & 11	20	5/28/2012	6/22/2012	18				
Level 12 & 13	20	7/2/2012	7/27/2012	18				
Level 14, 15 & 16	25	7/30/2012	8/31/2012	20				